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Abstract. We theoretically investigate the dispersion relation of small-amplitude optical waves superim-
posing upon a beam of polarized monochromatic light propagating along a single-mode channel waveguide
characterized by an instantaneous and spatially local Kerr nonlinearity. These small luminous fluctuations
propagate along the waveguide as Bogoliubov elementary excitations on top of a one-dimensional dilute
Bose quantum fluid evolve in time. They consequently display a strongly renormalized dispersion law, of
Bogoliubov type. Analytical and numerical results are found in both the absence and the presence of one-
and two-photon losses. Silicon and silicon-nitride waveguides are used as examples. We finally propose an
experiment to measure this Bogoliubov dispersion relation, based on a stimulated four-wave mixing and

interference spectroscopy techniques.

1 Introduction

The dynamics of small-amplitude perturbations on top of
a weakly interacting Bose quantum fluid may be described
within the framework of Bogoliubov’s theory [1-3]: the el-
ementary excitations of the fluid are collective bosonic ex-
citations whose direct- and reciprocal-space profiles may
be obtained by linearizing the Heisenberg equation of
the system around the equilibrium state. In the broad-
est sense of the term, the Bogoliubov dispersion relation
is the energy-momentum law of these Bogoliubov fluctua-
tions. This physical quantity is conceptually important in
physics. In particular, it is at the heart of the physics of
Bose-Einstein condensation and superfluidity [1-3].

The first most prominent application of the Bogoliubov
theory of elementary excitations was formulated by
Bogoliubov himself to qualitatively explain the superfluid
behavior of strongly interacting quantum fluids like liquid
helium [4]. In this dense system, the elementary-excitation
dispersion relation displays a phonon and roton behav-
ior and was measured by means of experiments based
on cold-neutron scattering [5,6]. The quantitative exper-
imental verification of the theory came later on with the
realization of Bose-Einstein condensates in ultracold va-
pors of weakly interacting atoms [7,8]. In these dilute
systems, the Bogoliubov dispersion relation presents a
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phonon and free-particle behavior and was experimen-
tally obtained thanks to experiments based on two-photon
Bragg scattering [9-16].

In the last few years, the physics of quantum fluids ex-
tended to nonlinear photonics, embracing a novel class of
systems, the so-called quantum fluids of light [17]: in the
presence (i) of a significant spatial confinement, and/or of
a weak diffraction and a strong degree of monochromatic-
ity, and (ii) of a substantial Kerr optical nonlinearity, light
and matter may combine to generate photonlike particles
that, differently from vacuum photons, are characterized
by sizeable (i) effective masses and (ii) mutual interac-
tions; in this case, a many-photon system may behave col-
lectively as a quantum fluid of matter, with novel features
stemming from its intrinsically nonequilibrium nature.

While the connection between hydrodynamics and
nonlinear and laser optics started being exploited a few
decades ago [18], the field of quantum fluids of light re-
ceived a further boost with the advent of semiconductor
microcavities in the regime of strong light-matter cou-
pling [19]. These systems exhibit exciton polaritons [17]
as weakly interacting bosonic quasiparticles that, most
remarkably, were experimentally demonstrated to con-
dense and display long-range spatial coherence at cryo-
genic temperatures [20-23]. As they are naturally subject
to driving and dissipation, these dilute cavity exciton-
polariton condensates are characterized by Bogoliubov
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dispersion relations with several novel out-of-equilibrium
features that were widely investigated at both the theo-
retical [24-31] and the experimental [32,33] level.

An optical platform alternative to these microcavity
devices — and which presently attracts a growing inter-
est within the quantum-fluid-of-light community (see, e.g.,
Refs. [34-45] to cite a few recent works) — consists in
a paraxial beam of quasimonochromatic light propagat-
ing in a cavityless, bulk, Kerr medium. In contrast to
the intrinsically driven-dissipative dynamics of the field
in laser media and/or cavities [17,18], in such propagat-
ing geometries, it is well known that the complex ampli-
tude of the optical field is a slowly varying function of
space and time whose propagation is ruled by a nonlinear
Schrédinger equation [46-48] mathematically identical, in
the absence of losses, to the conservative Gross-Pitaevskii
equation of dilute atomic Bose-Einstein condensates [1-3]
after exchanging the roles played by the time parameter
and the propagation coordinate (see, e.g., Refs. [49-54]
to cite other recent works). This nonlinear propagation
equation has been extensively used to describe many in-
teresting nonlinear-optics dynamical phenomena such as
the formation and the evolution of solitons [55,56], of
small-amplitude waves [57,58], and of modulation instabil-
ities [59]. In this latter case in particular, the wave equa-
tion predicts a modulation-instability spectrum [46-48]
formally analogous to the Bogoliubov dispersion relation
of a quantum gas of weakly attractive atom bosons [1-3].

While this spectrum has been widely used to ob-
tain the modulation-instability gain in nonlinear-fiber op-
tics [47,60-62], so far, no special attention has been de-
voted to its study in its own right — in particular in terms
of dispersion relation of the elementary excitations of a
propagating quantum fluid of light — and to its measure-
ment, exception made for the preliminary experimental
work [38], which was based on the nonlocal thermal opti-
cal nonlinearity of a liquid medium. In this article, we push
this research line forward by theoretically investigating the
Bogoliubov dispersion relation of a fluid of light propagat-
ing along a nonlinear single-mode channel [63] waveguide
and by proposing an experimental setup to measure it.
Because it is nonperturbatively coupled to its four-wave-
mixed partner, a weak-power probe on top of a strong-
power pump acquires a dispersion relation with peculiar
collective features such as a sound-like shape at low de-
tuning. In contrast to reference [38] where the effective
mass of the photons originates from paraxial diffraction
in the plane transverse to the propagation axis, and then
where the transverse-plane branch of the Bogoliubov law
is considered, in our one-dimensional guiding geometry,
we focus on the temporal branch of the dispersion be-
cause the effective mass originates from the second-order
dispersion properties of the material, as recently reviewed
by two of us in references [39,41]. Additionally, by consid-
ering realistic materials for the waveguide, and in particu-
lar the photon losses that characterize them, we quantize
the conditions needed to extract the Bogoliubov disper-
sion relation of the propagating fluid of light, based on
the experimental setup that we propose to measure it.
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The paper is organized as follows. To begin with, we
present in Section 2 the considered theoretical model,
fully accounting for one- and two-photon losses. We then
solve it in Section 3 in the ideal case of a beam of
monochromatic light. In Section 4, we study both an-
alytically (partly on the basis of Appendix A) and nu-
merically the dispersion relation of small-amplitude fluc-
tuations on top of the previously-found monochromatic
solution, within the framework of Bogoliubov’s theory.
Realistic examples of waveguides fabricated within the
silicon-photonics technology [64,65] are reported. We pro-
pose in Section 5 a pump-and-probe experiment [66] to
measure this Bogoliubov-type dispersion relation, based
on interference spectroscopy techniques. Finally, we sum
up our results in Section 6.

2 Model

In this section, we introduce the theoretical model investi-
gated in this work, of light propagation along a nonlinear
and realistically lossy single-mode channel waveguide. Sec-
tion 2.1 is devoted to the presentation of the corresponding
wave equation, of dissipative Gross-Pitaevskii type, and
Section 2.2 puts on its modulus-phase formulation within
Madelung’s approach of wave mechanics.

2.1 Dissipative Gross-Pitaevskii equation

We consider the propagation in the positive-z direction
of a spectrally narrow beam of linearly polarized (e.g.,
along the x axis) light of central angular frequency 2 and
propagation constant Sy = f(w = Q) along a single-mode
channel waveguide of dispersion law 3(w) and whose core
displays an instantaneous and spatially local Kerr nonlin-
earity as well as one-photon losses and two-photon absorp-
tion at Q. In this case, the amplitude A(t, z) of the light
wave’s complex electric field [47]

F(z,y) A(t,z) e ', (1)

where F(z,y) denotes the normalized-to-unity transverse
distribution of the waveguide’s fundamental mode and is
a slowly varying scalar function of the time parameter ¢
and of the propagation coordinate z which satisfies the
generalized nonlinear Schrodinger equation [47]

LA By 0*A , i )
i = e AR A= (ot az AP A, ()

written here in the retarded frame, that is, the frame mov-
ing at the group velocity 1/6; = 1/[df(w = Q)/dw] of
the electric wave. This propagation equation makes use
of the standard notations of nonlinear-fiber optics [47].
In particular, 32 = d?B(w = Q)/dw? = 0 denotes the
group-velocity-dispersion parameter, v 2 0 is the Kerr-
nonlinearity coefficient, ay > 0 is a linear coefficient de-
scribing one-photon propagation losses, and as > 0 is
a nonlinear parameter describing two-photon absorption
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losses. These parameters are evaluated at the operating
angular frequency 2 and are expressed in terms of the vac-
uum speed of light ¢, the Kerr index no Ogexpressed here in
m? V~2), the effective area Aeg = 1/ [[°._ dxdy|F(x y)|4
of the transverse mode, and the first- and third-order
electric-susceptibility tensors (1) and x©®) as [47]

v = (Q/¢)na/Ac

(7)) =

1

¢ 1+ LRe(xt)
s

g Re(X:(c3:)c z, :c)/Aeff

X Tm(x\'%)

(3)

i Im(Xﬂc T,T ac)/Aeff

Higher-order dispersion terms [47] are not included in
the model and free-carrier absorption may be neglected
(see, e.g., Refs. [67,68]). Equation (2), which is of com-
plex Ginzburg-Landau type, is nothing but the usual
wave equation of nonlinear-fiber optics in the realistic case
where one- and two-photon losses occur at 2 [47]. It is used
to model many nonlinearity effects in one-dimensional op-
tical waveguides, including, e.g., four-wave mixing, self-
phase modulation, stimulated Raman scattering, or the
formation of temporal solitons.

Most particularly, aside from the loss terms propor-
tional to ap and ax, it is formally analogous to the Gross-
Pitaevskii equation of quasi-one-dimensional dilute atomic
Bose-Einstein condensates [1-3] — hence the title of the
present section —, generally used to describe nonlinear phe-
nomena in one-dimensional atomic Bose quantum fluids
such as, e.g., the formation of spatial solitons and shock
waves, chaos effects, or nonlinear-tunneling superfluidlike
phenomena and matter-wave Anderson localization in the
presence of inhomogeneities. The mathematical analogy is
here based on the five following points:

1. The time parameter and the position along the prop-
agation axis, ¢t and z, play exchanged roles as spatial
and temporal coordinates.

2. The complex amplitude of the electric field, A(¢,z),
corresponds to the macroscopic single-particle wave-
function of the quasi-one-dimensional atomic conden-
sate.

3. The opposite of the inverse of the second-order dis-
persion parameter, —1/f3s, is the analog of the atom
mass.

4. The opposite of the optical-nonlinearity parameter,
—~, corresponds to the atom-atom interaction con-
stant in the zero-range-pseudopotential approxima-
tion.

5. As a boundary condition, the temporal profile of the
incident beam of light, given by A(¢, z = 0), determines
the initial condition on the solution of equation (2), of
first order in the timelike parameter z.

Accordingly, in what follows, we shall often employ the
language as well as mathematical techniques (mostly) spe-
cific to quantum hydrodynamics. For example, we will
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sometimes speak of “fluid of light” in place of “beam
of light,” following the terminology used in the introduc-
tory Section 1, and in particular, we will use Bogoliubov’s
theory to describe the dispersion relation of the elemen-
tary excitations of the propagating beam. As far as we
know, this has never been studied theoretically in its own
right, neither within the nonlinear-optics community nor
within the mathematical-physics one, be it in the non-
linear Schrodinger framework or the complex Ginzburg-
Landau one.

2.2 Madelung’s formulation

Working within Madelung’s formulation [69,70] of the dis-
sipative Gross-Pitaevskii-type equation (2) helps the an-
alytical analysis of the here-investigated problem. To do
s0, one begins with writing the unknown of equation (2)
in the following way:

A(t,2) = V/plt, 2) €049, (4)

where p(t,z) and 0(t,z) are real fields which physically
correspond to the instantaneous, local power P(t,z) =
;ceo ng p(t, 2) (go is the vacuum permittivity and ng is
the effective refractive index of the propagating mode
at ) and to the instantaneous, local phase of the beam
of light. Substituting the transformation (4) into equa-
tion (2) and separating the imaginary and real parts, we
respectively get the following coupled equations for p(t, z)
and 6(t, z):

ap 0

Z—ﬁz ( at>—(040+042p)0, (5a)
00 _ By *Jp | P (00

0: " 2yp oz T2 <8t> e (D)

Within the ¢ «— 2z mapping discussed previously, equa-
tions (5) correspond to Euler’s equations of quantum
hydrodynamics [69,70] for the densitylike, p(t,z), and
velocitylike, —f0200(t,2)/0t, fields: equation (ba) ex-
presses the “nonconservation” of the “current” p(t, z) x
—0200(t, z) /0t under the effect of the losses — it is a bona
fide “conservation” equation only when g and «y are
zero — and the derivative of equation (5b) with respect to
the spacelike coordinate ¢ corresponds to Newton’s second
law in an “energy” landscape given by the opposite of the
right-hand side of equation (5b), the first (second, third)
term of which being the equivalent of the so-called quan-
tum potential (the kinetic energy, the interaction energy).

3 Monochromatic beam

In this section, we solve equations (5) in the ideal config-
uration where the beam of light is monochromatic at 2.
Accordingly, the slowly varying amplitude A(t, z) of the
complex electric field (1) does not depend on time:

\/pO 190 7

A(t, 2) (6)
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Table 1. Optical parameters at the 1.55 pm telecommunication wavelength of single-mode channel waveguides whose cores are
made of silicon (middle column) and of silicon nitride (right column). These figures are obtained from numerical integrations of
the differential equations describing the nondegenerate four-wave mixing in silicon-based optical waveguides (see, e.g., Ref. [71]).
The simulations are based on the finite-element-method engine of COMSOL Multiphysics®. In the table below, “TM” (“TE”)
stands for “transverse magnetic” (“transverse electric”), indicating a configuration for which there is no magnetic (electric) field
in the direction of propagation. Note that the negative (positive) B2 in the TM-mode (TE-mode) silicon-nitride case is obtained

for a striped (standard) configuration with air (silica) cladding.

Silicon (Si) waveguide

Silicon-nitride (SigN4) waveguide

. L 1.8 (TM mode) 1.5 (TM mode)
Effective refractive index, ng ~ ~
2.3 (TE mode) 1.6 (TE mode)
13.0 ps? m™'  (TM mod —0.6 ps> m™* (TM mod
Group-velocity-dispersion parameter, 2 ~ bs Qm . ( mode) ~ [2)5 11 ( mode)
—1.3 ps* m™" (TE mode) 0.3 ps® m (TE mode)

Kerr index, na

Effective mode area, Aog ~0.2 pm?
Kerr-nonlinearity coefficient, v
One-photon-loss coefficient, «ag
Two-photon-loss coefficient, as ~0.2 ||

where po(z) and 6p(z) are solutions of the t-independent
versions of equations (5), i.e.,

d
70 = —(a0 + a2 p0) po, (7a)
dby

= . b
gy =P (7b)

Integrating equation (7) yields the following analytical ex-
pressions for pg(z) and y(z) as a function of the propaga-
tion coordinate z € [0, L] along the waveguide of length L:

—QpZz
e 0

po(z) = po(0) ; (8)

0
1+ Q2 po( ) (1 _ e—aoz)

Qo

and, defining the space average (f(2)). = L [ d2’ f(2') of

some z-dependent quantity f(z),

0o(2) = 60(0) + 7 (po(2))= 2, (9a)
o) = b 1+ 20O meony o)

The graphical representations of equations (8) and (9)
are shown in Figure 1 for typical nonlinear-silicon-
photonics [64,65] optical parameters in the 1.55 um
telecommunication range. We particularly consider the
propagation of a TM mode along waveguides with silicon
(plain curves) and silicon-nitride (dashed curves) cores,
the optical constants of them are listed in the middle and
right columns of Table 1. The silicon pg(z) and 0y(z) vary
more rapidly than the silicon-nitride ones because one-
photon losses — that give 1/aq as one of the typical scales
of variation for pg(z) and 0y(z) (cf. Egs. (8) and (9)) — is
more important in silicon than in silicon nitride (see the
next-to-the-last row of Tab. 1).

Né cegno X 107 m2v—2

zé ceomng X 20.3 m~ ! V2

~3.5 dB em™!

N% ceono X 107 m?2 v—2

~2.0 pm?

1% ceomo X20.3x 1072 m~t v?

~0.2 dB cm™?!

Oo(z) = 6o(0) (mrad)

7.5 i
0 ----------;----.----.-‘:--.-----.---;-.---..---..
0 5 10 15 20
z (cm)

Fig. 1. Power Py(z) = }ceonopo(z) (Panel A; Eq. (8))
and phase 6p(z) — 6p(0) (Panel B; Egs. (9)) of the beam of
monochromatic light as a function of the propagation distance
z € [0,20 cm]. The plain (dashed) curves are obtained for a
TM mode at 1.55 um propagating along a channel waveguide
with a silicon (silicon-nitride) core, the optical parameters of
which are listed in the middle (right) column of Table 1.

4 Bogoliubov dispersion relation

In this section, we investigate the dispersion relation of
weak-amplitude deviations from the ¢-independent and
z-dependent power-phase pattern given in equations (8)
and (9). In Section 4.1, we derive the propagation equa-
tions of these fluctuations within Bogoliubov’s theory
of elementary excitations. We then solve them in Sec-
tions 4.2 and 4.3 and get the corresponding dispersion
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law — the so-called Bogoliubov dispersion relation — in, re-
spectively, the lossless (ag, az = 0) and the lossy (ayg,
as # 0) configuration. For a CW beam of light, time
translational symmetry makes the Bogoliubov dispersion
relation be a function of the angular frequency w of the
modulation of the incident beam’s complex amplitude, at
z = 0. The Bogoliubov law measured after propagation
along the waveguide, at z = L, is the key quantity of the
experiment proposed and detailed in Section 5.

4.1 Dissipative Bogoliubov-de Gennes equations

Let us consider t-dependent departures from the steady
profiles (8) and (9). This amounts to search for the solu-
tions p(t, z) and 0(t, z) of equation (5) in the form

,2) = po(2) + olt, 2),

t (10)
t,z) = 0p(z) + (¢, 2),

(
p(
o (11)
where o(t, z) and — 2 09(t, z) /Ot are real fluctuating fields
that are in addition assumed to be small [69,70]. Inserting
equations (10) and (11) into equation (5), linearizing the
corresponding system around [p(t, z), —f2 00(t,2)/0t] =
[p0(2),0], and Fourier expanding o(t,z) and (¢, z)
as [69,70]

o) = Vi) [

o ) fae ) e

at (@) f(w,2) €]

1 *° dw

2 Vpo(z) [oo 2m
—a*(w) f2 (w,2) '],

we straightforwardly obtain the following matrix differen-
tial equation for the Fourier amplitudes fi(w, 2):

9L, z)

(13)

0 I fe] _ f
i0 [ f+] -k [ fﬂ , (14a)
i B2
K(w,z) = 2ﬂ[a0+3a2p0(2)] o2 “
22 w427 po(2) ; [ao+a2 po(2)]
(14b)

The a(w)’s in equations (12) and (13) are chosen to be z
independent and homogeneous to a voltage times a time
so that the fi(w, z)’s encapsulate all the z dependence of
the fluctuations and are by construction dimensionless. In
the absence of photon losses (g, ae = 0), equation (14a)
and the opposite of equation (14b) are formally analogous
to the Bogoliubov-de Gennes matrix equation and the
Bogoliubov-de Gennes Hamiltonian of dilute atomic Bose
gases within Madelung’s picture [69,70]. When present,
one-photon losses (v terms) enter the matrix propaga-
tion equation (14a) of the fluctuations into diagonal terms,
in a similar fashion to the gain of a laser medium in
the matrix propagation equation of the modulations of
a paraxial optical field [46]; while accounting for the effect
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of a gain would indeed correspond to consider a diago-
nal propagation term of the form (9f+/0z)cain = G fx,
with G > 0, thus describing an amplification of the mod-
ulations of the optical field, the diagonal one-photon-loss
terms come out with a “—” sign in equation (14a) and
have on the contrary the tendency to make the amplitude
of the modulations decrease in the course of the propaga-
tion of the beam of light along the waveguide. On the other
hand, two-photon losses (as terms) enter equation (14a)
into intensity-dependent diagonal terms exactly acting as
gain-saturation terms in laser media. Finally, note that as
K(w, z) is an even function of w, its eigenelements deter-
mined after will be so too.

4.2 Lossless waveguide

Let us first analyze the simplest situation where «g,
ag = 0. In this ideal, lossless, case, there is no power loss
in the course of the propagation of the beam of light along
the waveguide:

8
po(2) 2 po(0) = po = const, (15)

and the phase of the beam consequently grows linearly
with the propagation distance z:

60(2) 2 66(0) + 7 po 2. (16)

Accordingly, in addition to having zero diagonal terms,
the Bogoliubov-de Gennes-type matrix (14b) is homoge-
neous, so that the Fourier components f4 (w, z) of the den-
sity and phase fluctuations of the fluid of light, solutions of
equation (14a), are plane waves with w-dependent ampli-
tudes fi (w) and wave number k(w) along the propagation,
z, axis:

fr(w, 2) = fo(w) k@)=, (17)
Inserting the physical ansatz (17) into the differential
equation (14a) straightforwardly yields the eigenelement
problem

w f+(w) — K(w f+(w) a
v [F] =xe [ (182)
62 2
0 w
Kw) =1 4 2 (18b)
22 w4+ 2vpy O

Its two eigenvalues k(w), roots of the characteristic poly-
nomial det[(w) — X 15] = X2 + det[K(w)], are by con-
struction symmetrically opposite — corresponding to a pos-
itive, “4,” branch and a negative, “—.,” one [1] — and read

k(w) = £ /— det[K(w))]

—:l:\/ﬂ; w2 (% w2+2'yp0).

Equation (19b) is nothing but the wave-number—angular-
frequency relation of the power and phase fluctuations,

(19a)

(19b)
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that is, by definition, the Bogoliubov dispersion relation,
of the homogeneous beam of monochromatic light (15)
and (16). Note that this quantity may a priori be complex,
depending on the sign of the group-velocity-dispersion
parameter (B and on the one of the Kerr-nonlinearity
coeflicient ~.

When (2 and « are of same sign, i.e., when 2 > 0 (nor-
mal group-velocity dispersion) and v > 0 (self-focusing
Kerr nonlinearity) or when 2 < 0 (anomalous group-
velocity dispersion) and v < 0 (self-defocusing Kerr
nonlinearity), the dispersion law k(w) given in equa-
tion (19b) is a real function of w that directly corre-
sponds, within the ¢ «— 2 mapping (then within the
angular-frequency «— wave-number mapping), to the
dispersion relation of the elementary excitations prop-
agating on top of a homogeneous dilute atomic Bose-
Einstein condensate at rest [38,39,41]. The latter is linear,
or “phononlike” [1-3] within the atomic-gas framework, at
small w’s and quadratic, “particlelike” [1-3], at large w’s:

v wl, lw] < 1/,
k(w) ~+ (20)
L P
where the parameters
vt = /B2 po, (21)
B2 B2
T= \/ = | 71|, (22)
Ypo v

respectively homogeneous to the inverse of a velocity and
to a time, are within the ¢ «—— z mapping the respective
optical analogs of the Bogoliubov speed of sound and of
the healing length [1-3] of a homogeneous dilute atomic
Bose gas (recalling that —1/32, —v, and pg play the role
of the mass, of the interaction constant, and of the uni-
form density of the quantum fluid, respectively). We plot
in Figure 2A k(w)/(]v|po) against w7 > 0, as given by
equation (19b) for fy’s and +’s having the same sign. The
red curves on this graph indicate the low- and large-w
approximations (20) for the positive, “+,” branch of the
Bogoliubov dispersion relation. According to Landau’s cri-
terion for superfluidity [72,73], a zero-temperature conser-
vative Bose-Einstein condensate flowing with a velocity
smaller than the Bogoliubov speed of sound is energeti-
cally stable against the presence of a weakly perturbing
impurity [2,3]; thus,

v~ ! = min

weR (23)

k(w) ‘

w

defined in equation (21) may be regarded as a direct opti-
cal equivalent of Landau’s critical velocity for superfluid-
ity, as recently investigated in the different optical config-
uration where a paraxial beam of monochromatic light
propagates in a waveguide-free nonlinear medium [38].
Finally, note that the w-independent Hartree-type shift
+|v]po in the second row of equation (20) corre-
sponds to the naive nonlinearity-induced correction to the
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2l

| === Real part

k(w)/ (] po)

Imaginary part

=== Real part
=== [maginary part
- |

3 4

Fig. 2. Real (plain curves) and imaginary (dashed curves)
parts of the normalized Bogoliubov dispersion relation
k(w)/(|v|po) against wr > 0 in the absence of one- and
two-photon losses, as given by equation (19b). The plots are
symmetric with respect to the horizontal k(w) = 0 line: the
branches above (below) this line correspond to the “+7 (“—7)
sign in equation (19b) and are called “positive (negative)
branches.” Panel A: “Dynamically” stable case (in opposition
to the situation discussed after Eqs. (24)) where the group-
velocity-dispersion parameter G2 and the Kerr-nonlinearity co-
efficient v have the same sign; the lower (upper) red curve
indicates the low-w (large-w) linear (parabolic) behavior of the
positive branch of the Bogoliubov dispersion relation, as de-
termined in the first (second) row of equation (20). Panel B:
“Dynamically” unstable case (discussed after Eqgs. (24)) where
(B2 and v have opposite signs; the red marker at (\/ 2,1) refers
to the remarkable identity (24c) for the positive branch of the

imaginary part of k(w)/(|v] po)-

dispersion-induced fluctuation + |32|w?/2 of the beam’s
propagation constant Gy; the rigorous Bogoliubov analysis
carried out here shows that this is valid in the |w| > 1/7
limit only and that the full propagation constant’s fluctu-
ation k(w) is in fact gapless, i.e., that it vanishes at w = 0,
as one may verify in the first row of equation (20) and in
Figure 2A.

When [y and v are of opposite signs instead, k(w)
given in equation (19b) is a complex function of w that
we plot in Figure 2B within the dimensionless units of
Figure 2A. In this case, one has the following noticeable
identities:

Re[k(w)] =0 for |w|<2/T, (24a)
Im[k(w)] =0 for |w|> 2/, (24b)
[tmk(= V2/7)]| = |11 po, (24¢)

the latter being indicated by means of a red marker
for the positive branch of the Bogoliubov law’s imagi-
nary part. Within the quantum-fluid, “Gross-Pitaevskii,”
framework, the fact that the Bogoliubov dispersion rela-
tion possesses an imaginary part signals that the evolving
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fluid of light is dynamically unstable [1-3], very especially
at the angular frequencies w such that Im[k(w)] < 0, for
which | fi (w, 2)| = | fx (w)] e ™F)]= diverges as the time-
like parameter z increases. Within the original nonlinear-
optics, “nonlinear Schrédinger,” framework, this corre-
sponds to the situation where the propagation of the light
beam in the positive-z direction is not robust against the
formation of modulation instabilities (also called sideband
instabilities) [46-48,60-62]. In that case, deviations from
the background pattern (15) and (16) are reinforced by
the Kerr optical nonlinearity of the underlying medium,
leading to the generation of spectral sidebands and the
eventual breakup of the wave profile into a train of pulses.

4.3 Lossy waveguide

Now, let us analyze the realistic configuration for which
one- and two-photon losses occur at the operating angular
frequency Q: agp, as # 0. In Section 4.3.1 first, we analyt-
ically investigate the case where the effective evolution of
the Bogoliubov fluctuations in the positive-z direction is
adiabatic. To do so, we will make use of an optical version
of the adiabatic theorem of quantum mechanics [74-76],
derived in detail in Appendix A. In Section 4.3.2 then,
we numerically treat the general case where this effective
evolution might possibly be nonadiabatic. We illustrate
and discuss our results on the basis of the two concrete
nonlinear-silicon-photonics examples of Table 1.

4.3.1 Adiabatic evolution

A z-dependent configuration for which analytical solutions
of the dissipative Bogoliubov-de Gennes differential sys-
tem (14a) may still be easily obtained gets along with the
case where the corresponding effective evolution along the
propagation, z, axis is adiabatic. From Appendix A and
as mathematically formulated in the third paragraph of
the present section, the constraint for having such an adi-
abatic effective evolution is that the nondiagonal elements
of the rate of change of (14b) in the normalized basis of
the (14b)’s eigenvectors and in units of the difference of
the two (14b)’s eigenvalues must be smaller than this dif-
ference. In this case, each (14b)’s eigenvector is a local
function of z that strictly “follows” the variations of its
corresponding eigenvalue as a function of z.

Accordingly, as the effective evolution (14) is not
cyclic, i.e., as K(w, L) # K(w,0) (simply because po(L) #
p0(0); see Eq. (8) or Fig. 1A), Appendix A demonstrates
that the adiabatic solutions fi(w,z) of equation (14a)
may be written in the generic form

fi(w7 Z) _ .fi(w7 Z) eifoz dz' k(w,z")

= falw, ) elbe,

(25a)
(25Db)

where the local amplitudes fi(w,z) and the local wave
number k(w, z) along the z axis are eigenelements of the
two-by-two matrix K(w, z) given in equation (14b):

k(w, z) |:f:+(wvz):| = K(w, z) |:f:+(wvz):| )

T P 29
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Equation (26) admits nontrivial solutions when k(w, z) is a
root of the characteristic polynomial det[K(w, z) — X 1] =
X2 — tr[K(w, 2)] X + det[K(w, 2)], i.e., when

E(w.2) = tr[K(w, 2)] i\/trQ[Kiw,z)] et K. 2)]

2
(27a)
_ [C;O tas po<z>}
+ \/ﬁ; w? [622 w? + 2700(2)] _ e pZ(Z)P,
(27b)

from which we deduce the Bogoliubov dispersion relation
(k(w,z)). of the adiabatically evolving fluid of light, as
appearing through equation (25b).

These results hold when the adiabatic constraint tex-
tually formulated in the first paragraph of the present sec-
tion is satisfied. By analogy with equation (A.9), this con-
dition may be written in the form

(w20 G 00 |

max
2€[0,L] |k (w, 2) — kx(w, 2)|

< min |kg(w,2) — kx(w, 2)|,

28
z€[0,L] ( )

where ki (w,z) refers to the “+” branch of k(w,z) in
equation (27b) and |fi(w,2)) o< ![f+ +(w,2) f- +(w,2)]
to the corresponding eigenvector, normalized to unity.
In the very particular case where one- and two-photon
losses are absent, i.e., in the case where ag, as = 0,
OK(w, z)/0z identically vanishes, making the left-hand
side of (28) zero, and then the latter inequality per-
fectly satisfied, as it has to be in such a configuration;
accordingly, the Bogoliubov dispersion relation (k(w, 2)).
reduces to k(w) given in equation (19b), as one readily
checks from equation (27b).

4.3.2 Arbitrary evolution

When the effective evolution of the Bogoliubov fluctua-
tions in the positive-z direction is not adiabatic, the re-
sults derived in Section 4.3.1 do not hold, as a consequence
of which one generically has to rely on a numerical reso-
lution of the dissipative Bogoliubov-de Gennes-type prob-
lem (14). This is what we do in the next paragraph.

We start by writing the general solution of equa-
tion (14a) in the formal matrix exponential form

{fJ“(Z’Z)] = expli Keg(w, 2) 2] [fJ“(Z’O)} ) (29)

f(w,2) f~(w,0)
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TM mode TE mode
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Fig. 3. Real (upper row; black plain style as in Fig. 2) and imaginary (lower row; black dashed style as in Fig. 2) parts of
the Bogoliubov dispersion relation keg(w > 0,z = L) of “TM” (left column) and “TE” (right column) fluids of light exiting a
L = 2 cm-long silicon-core single-mode channel waveguide. The plots result from the numerical diagonalization of Keg(w, L)
defined in equation (30b) and the red curves indicate the adiabatic predictions of Section 4.3.1. The operating wavelength equals
1.55 pm, the incident power is of 100 mW, and the corresponding silicon’s parameters are given in the middle column of Table 1.
The dispersions are horizontally symmetric: the upper (lower) branches correspond to the “+” (“—”) sign in the second row of
equation (27b) and are called in the text “positive (negative) branches.”

TM mode TE mode

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1
w (ps7h) w (ps)

Fig. 4. Same as Figure 3 for a L = 20 cm-long silicon-nitride-core single-mode channel waveguide, the parameters of which are
given in the right column of Table 1.

where the w-, z-dependent two-by-two matrix Keg(w, 2) is  In equation (30a), Z{-} is the equivalent of the chronolog-
defined through ical ordering [77] for time-dependent quantum-mechanical
systems; it standardly appears because K(w, z) K(w, 2") #

2 K(w, 2") K(w, z) for all 2’ # z and may be defined through

expli Kegr(w, 2) 2] = Z{exp [z/ dz' K(w, z/):| } (30a) the infinite, reversely ordered product (30b), where z, =

0 ndz =nz/N (n € [0,N]). In this case, the Bogoliubov

0 dispersion relation of the fluid of light corresponds to

= ngnoo H expli K(w, 2,) 62].  (30b)  the local eigenvalues keg (w, 2) of the effective propagation

n=N matrix Keg(w, z), that we determine from the numerical
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diagonalization of the latter by means of equation (30b).
We plot in Figures 3 and 4 the real (upper panels; black
plain style as in Fig. 2) and imaginary (lower panels; black
dashed style as in Fig. 2) parts of keg(w > 0,2 = L) in
the case of a L = 2 cm-long silicon-core and a L = 20 cm-
long silicon-nitride-core, respectively, single-mode channel
waveguide supporting a TM (left panels) or a TE (right
panels) mode. The incident light beam operates at 1.55 um
and 100 mW, and the waveguides’ parameters are given
in Table 1. As stated in the introduction of Section 4, the
Bogoliubov dispersion relation kg (w, 2) is here displayed
at z = L because the beam of light is typically imaged at
the exit of the waveguide, precisely where z = L.

By plotting in red the real and imaginary parts of the
adiabatic Bogoliubov dispersion relation (k(w, z))r on top
of the exact Re[kest (w, L)] and Im[kes (w, L)], we note that
the agreement between the predictions of Section 4.3.1 and
the present numerical results is good, although the two
nonlinear-silicon-photonics examples examinated here fall
into the a priori unfavorable situation where one-photon
losses dominate the Kerr nonlinearity: for the waveguide
made of a silicon (silicon-nitride) core, v po(0) ~ 2.0 m~!
(~2.0 x 1072 m~!) while ap/2 ~ 40.3 m~! (~2.3 m~1).
We numerically check from equations (14b) and (26) that
the adiabatic-evolution constraint (28) is verified for a
wide range of Bogoliubov angular frequencies w and that
the ratio of its left-hand side by its right-hand one is as
small as 1/w? is when w is large. Accordingly, in the dis-
cussions below, we will use the adiabatic identification

L
ke (w, L) = (k(w, 2)) 1, = 2/0 s k(w,2),  (31)

to quantitatively describe the silicon and silicon-nitride
Bogoliubov dispersions shown in Figures 3 and 4.
Figures 3A, 3C, and 4A (3B, 3D, and 4B) display the
same qualitative behavior for the real (imaginary) part
of the Bogoliubov dispersion relation of the fluid of light
exiting the waveguide. In sharp contrast to the linear dis-
persion of the propagating phononlike mode in the lossless
(ap and g null), stable (2 and v of same sign) config-
uration of Section 4.2 (see the first row of Eq. (20) and
Fig. 2A), the Bogoliubov fluctuations show here an over-
damped, nonpropagating, behavior at low w, as already
described theoretically in the context of semiconductor-
microcavity exciton-polariton quantum fluids [17,26-31].
In this regime indeed, the real part of the Bogoliubov
law is dispersionless, equal to zero. The latter starts
being nonzero and symmetric with respect to zero at
large w while the imaginary part becomes w indepen-
dent. The latter remains anyhow nonzero and positive,
as it is in the low-w regime where it is symmetric with
respect to its large-w value. This positiveness indicates
that the Bogoliubov waves oscillating on top of the fluid
of light are exponentially damped at any w according to
e~ Imlkert (@.L)IL - On the other hand, the noticed horizon-
tal symmetry of the curves directly refers to the “£” sign
in the second row of equation (27b): for each plot, the
upper, “+,” branch corresponds to what we call the posi-
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tive branch of the Bogoliubov dispersion relation and the

lower, “—.” one to its negative branch.

A quantitative difference exists between Figures 3B
and 3D: the low-w behavior of Im[keg(w, L)] differs from
one plot to the other. From equations (27b) and (31), we
easily check that

Im[kegr (w — 0, L)] = Im[keg(w = 0, L)]

F sign(52) Wazlv w?, (32)

at the second order in w — 0, where “F” refers to the
“+” branch of the Bogoliubov dispersion relation, and we
recall that 7 and ay are both positive (see Tab. 1). In
the TM-mode case of Figure 3B, sign(f2) = 1, as a result
of which the imaginary part of the “+” (“—”) branch of
the dispersion approaches quadratically its w = 0 value
from below (above). In the TE-mode case of Figure 3D,
sign(f2) = —1 and one then has the contrary behavior:
the imaginary part of the “+” (“—") branch of the dis-
persion tends quadratically to its w = 0 value from above
(below).

There is also a quantitative difference between Fig-
ures 4B and 3B and 3D: the w = 0 value of Im[keg(w, L)]
equals its large-w one in Figure 4B whereas it does not
in Figures 3B and 3D. This low-w behavior distinctness
originates from two-photon absorption that is negligible in
silicon nitride while really present in silicon (see Tab. 1).
Indeed, from equations (27b) and (31), it is easy to demon-
strate that

Im[keff(w =0, L)] = Im[kef‘f(|w| - 00, L)]

(po(2))L-

Qs
2

+ (33)

Thus, the w = 0 and |w| — oo imaginary parts of keg(w, L)
are equal when ay = 0, i.e., in the absence of two-photon
absorption (silicon nitride), and different when ay # 0,
i.e., in the presence of two-photon absorption (silicon).

The Bogoliubov dispersion relation plotted in Fig-
ures 4C and 4D is as for it different from the ones shown
in Figures 3, 4A, and 4B, but its real part nevertheless
looks like the lossless, stable result of Figure 2A. This
may be quantitatively investigated by making use of the
ag — 0, i.e., the silicon-nitride, version of equation (27b)
and the adiabatic identification (31). In the present TE-
mode case, B2 and «y are both positive (see Tab. 1), as a
result of which the square root in the ay — 0 local Bogoli-
ubov law k(w, z), equation (27b), is real for all w and ag/2
is the w-independent imaginary part of k(w, z). Thus, in
virtue of (31), the space average over the segment [0, L] of
the first (second) row of k(w, z) when ay — 0 corresponds
to the imaginary (real) part of keg(w, L). Precisely,

Im ke (w, L)] = O;O ~230m! (34)
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does not depend on w and, defining the respective local,
z-dependent, versions

v (2) = /B2y po(0) e=0z,

_ B2 )
)= \/Wo(o) ez v7l(z)’

of equations (21) and (22) for a po(z) given by the ag —
0 limit of equation (8), one finds the following low- and
large-w behaviors for Re[keg(w, L)]:

(35)

(36)

Re[kes (w, L)]

-+ <\/ﬁ; w? {ﬁ; w? + 27po(0)€“’°z} >L (37a)

(w1 () L], lw| < 1/7(L),
2 2 o) %) ] 3 1/(0

~

)

5 )
(37b)
where 1/7(L) ~ 0.16 ps—%, 1/7(0) ~ 0.26 ps~1,
zet(L/2) _
(wl())L = HL( /2/ ) o 710) (382)
~6.25x 1072 ps m™ !, (38b)
and
Zofr (L
7 (po(0) e™ %)L = eHL( ) 7 po(0) (39a)
~1.32x1072 m !, (39b)
zef(z) = (1 — e7*%)/ay < z denoting the effective

length [47] of a portion of waveguide of length z € [0, L].
For lisibility’s sake, we do not display the asymptotic ap-
proximations (37b) in Figure 4C.

5 Proposed experiment

In this section, we propose an experiment [66] by means
of which the Bogoliubov dispersion relation investigated
in Section 4 can be measured. In Section 5.1 first, we the-
oretically deal with the physical observable that has to
be measured to get the Bogoliubov dispersion relation. In
Section 5.2 then, we present the basics of the experimental
setup and how the theoretical ingredients of Section 5.1
practically take part in the experiment.

5.1 Observable to measure

As defined through equation (17) (lossless configuration),
equation (25b) (adiabatic lossy configuration), or equa-
tion (29) (generic, possibly nonadiabatic, lossy configura-
tion), the Bogoliubov dispersion relation, denoted in each
case as k(w), (k(w,2)),, and keg(w, 2), is related to the
phase of the z-dependent angular-frequency components

Eur. Phys. J. D (2017) 71: 146

f+(w, z) of the fluctuations p(t, z) and 9(¢, z) of the power
and the phase of the light beam in the waveguide. Then,
it should be possible to extract it from a measurement
of the phase ¢ (w) that a perturbation of the amplitude
of the complex electric field accumulates during propaga-
tion along the waveguide. This accumulated phase is mea-
sured at z = L as a function of the fluctuation’s angular
frequency w.

Considering that the amplitude A(t,z) of the in-air,
z ¢ [0, L], complex optical field weakly deviates as

[e%S)
dw = —iwt

A(t,z) = Ag(z) 4 %) / o Glw,2) 70 (40)

— 00
from the t-independent piecewise-constant mean field
\/P< 6i0<7 z < 0,

\/p> ei9> )

the accumulated phase ¢ (w) introduced above should
then read as

AM@—¢%@JW”—{ (41)

z> 1L,

+

or(w) = Arg[ (w, L )] + A6 (mod 2m), (42)

a(w,07)
where Arg(X) € |—m, 7] denotes the principal argument
of some complex number X and Af = 6> — 6.. Here,
the constants p< and < correspond to the power and
the phase of the in-air beam of light before (“<”) and
after (“>”) propagation along the nonlinear waveguide.
The Bogoliubov dispersion relation enters the formula (42)
through the first term in the right-hand side, that is,
through the relation linking the output Fourier compo-
nent a(w, L*) of the in-air perturbation A(t, z) — Ag(2) to
its input, a(w,07), one.

This relation may be deduced from the matching of the
Poynting vector at the z = 0, L air-waveguide interfaces,
that is, within the slowly-varying-envelope approximation
used in this work, from the system [41]

A(t’ 07) = \/TLO A(t7 0)7
\/nO A(t,L) eiﬁoL _ A(t,L+)eiﬁ0L/n°,

(43a)
(43b)
Linearizing the Madelung representation (4) of the am-
plitude A(t, z) of the in-waveguide, z € [0, L], complex
electric field according to equations (10) and (11) yields,
making use of equations (12) and (13),

*° dw
2

[a(w) u(w, z) e ™"

A(t, 2) = Ao(2) + €i%0(2) /

—00

+a* (W) v (w, 2) e, (44)
where u(w, z) and v(w, z), defined through [69,70]
u(w, z) £o(w, 2) = fi(w, 2), (45)

are the Bogoliubov amplitudes [1-3], as appearing in
the context of dilute atomic Bose gases. In the ab-
sence of one- and two-photon losses, the non-Hermitianity
of the Bogoliubov-de Gennes-type matrix (14b) makes
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the so-called Bogoliubov wavefunction ¢[u v] obey the nor-
malization condition |u|? — |v|?> = £1 [1], where the “+”
(“=") sign refers to the “positive” (“negative”) branch of
the Bogoliubov dispersion relation k(w); since |u|? —|v]? =
Re(f: f_) (from Eq. (45)), this normalization constraint
directly transfers to the fi’s as Re(f} f ) = £1. In
the general case where one- and two-photon losses oc-
cur at the carrier angular frequency (2, the Bogoliubov
wavefunction obeys a related, yet formally more cumber-
some (see Eq. (29)) normalization condition that one may
generically write in the form

|u(w7 Z)|2 - |v(w, Z)|2 = N(wv Z) € Rv (46)

where, according to the discussion above, N(w,z) =
+1 for all z as long as «p, as = 0; from equa-
tions (45) and (46), one has the normalization constraint
Re[ff(w,2) f_(w,2)] = N(w,z) for the fi(w,z)’s in the
presence of photonic losses. Combining equations (6), (40),
(41), (43), (44), and (46), we eventually find

P< = 1o PO(O), O = 90(0)’ (47)
p>=mnopo(L), 6> ="00(L)+ (1 —1/no)BoL, (48)
and, most importantly,
&(w, L+) = NU(vfuw)O) EL(W, O_) + JK(ZEW(?) a*(_wv 0_)’ (49)
where we have defined
U(w) = u(w, L) u*(w,0) — v*(w, L) v(w, 0), (50)
V(w) =v(w, L)u*"(w,0) — v (w, L) v(w,0). (51)

We now fix the input, z = 07, condition for the perturba-
tion A(t,z) — Ag(z) on top of Ag(z) as

a(w,07) #0 while a(-w,07) =0, (52)
which physically amounts to consider that a single per-
turbation oscillating at 4+ w is injected into the waveg-
uide, in accordance with the pump-and-probe experiment
described in Section 5.2. As a result, according to equa-
tion (49), the formula (42) for the phase accumulated
by the Bogoliubov fluctuations along the waveguide re-

duces to

or(w) = Arg|U(w)] + A8 (mod 27). (53)

This congruence is strictly speaking valid in the case where
N(w,0) > 0; when N(w,0) < 0, an extra + 7 shift ap-
pears in the right-hand side but the latter may be ab-
sorbed in Af, as a result of which (53) remains struc-
turally valid also in the case where N(w,0) < 0. From the
generic diagonalization of Section 4.3.2 and making use
of equations (45)-(48) and (50), inverting equation (53)
should in principle yield the Bogoliubov dispersion rela-
tion. We illustrate this in Sections 5.1.1 and 5.1.2 in the
previously-studied physically interesting cases where the
(real part of the) Bogoliubov dispersion relation displays
a linear, soundlike, behavior at low w, that is, in the loss-
less configuration of Figure 2A and the lossy situation of
Figures 4C and 4D, respectively.
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5.1.1 Lossless waveguide

In the lossless, ag, as = 0, situation treated in Section 4.2,
letting

u(w, z) = i(w) e*@)? (54)
v(w, z) = B(w) e* )=, (55)

equation (50) transforms into
Uw) = la(w)? eMF —jo(w)? e @ (56)

Considering for the sake of simplicity the positive, “+,”
branch of k(w) in equation (19b) and that the parame-
ters 2 and + entering it are both positive, k(w) is posi-
tive for all w and the Bogoliubov weights @(w) and o(w),
such that 4(w) + 09(w) = fi(w) (see the definitions (17)
and (45)), are real functions of w satisfying

w2 7_2

=i = (7 )

VL [EW)/(rp0)]2 — 10 F2
‘{ k(w)/ (3 p0) } - (570)

where 7 is defined in equation (22). From equations (19b),
(53), (56), and (57), we plot in Figure 5 the phase ¢, (w) —
Af as a function of wr > 0 (from Eq. (57a)) and as a
function of k(w)/(7y po) (from Eq. (57b)).

In the low-w, |w|7T < 1, regime where k(w)/ (7 po) =~
|w| T (first row of Eq. (20)), a lengthy Taylor expansion of
equation (53) yields

(57a)

L
w) — Af = 2 arctan
Pr) (1+\/1+£2)
((3+20%) [k;(w)r
. 58
6(1+2) [vp0] © (58)
where ¢ = ~pg L is the waveguide’s length in units of

the “nonlinear length” 1/(y po). The approximation (58)
straightforwardly reduces to

¢ k(w)r
w)—Af ~ 0+ { + 99
or(w) 2 | 7o (59)
in the particular limit ¢ < 1, and to
0 kw)]?
— Al ~ .
b1) SRS el IR SRR

when ¢ > 1. The latter approximations are all the more
satisfied as the second term is much smaller than the first
one in each right-hand side, i.e., as |w|7 < 1/v/¢; conse-
quently, equations (59) and (60) are valid when |w|T <
1 < 1/V/¢ and when |w|7 < 1/V/{ < 1, respectively. Im-
portantly, as one sees in equations (58)—(60), the low-w
Bogoliubov dispersion relation k(w) ~ v~! |w| may be ex-
tracted from the phase ¢ (w) — Af by Taylor expanding
the latter at the second order — at least — in |w|7T < 1.
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Fig. 5. Phase ¢r(w) accumulated by positive-branch (“+” sign in Eq. (19b); see the text) Bogoliubov fluctuations of the
amplitude of the electric field in the course of its propagation along a lossless, ap, a2z = 0, single-mode channel waveguide
with B2, > 0 and of normalized length ¢ = v po L = 0.75 (black densely dashed curves), 5 (dashed), 10 (weakly dashed), and
17.5 (plain). As pictorially sketched in blue, one first traces ¢ (w) as a function of the angular frequency w of the Bogoliubov
fluctuations (Panel A; from Eq. (57a)), which then makes it possible to extract the wave number k = k(w) of these Bogoliubov
fluctuations, the so-called Bogoliubov dispersion relation of the fluid of light (here homogeneous of constant “density” po),
making use of the plot of ¢r(w) against k(w) (Panel B; from Eq. (57b)). On the £ = 17.5 curve of Panel A, the orange circular
markers and the orange dashed lines indicate the inflection points of ordinates (63) and the plateaux (64a), respectively. The red
curves correspond to the £ = 5 low- and large-w behaviors (58) and (65) where k(w)/(y po) ~ |w| T and k(w)/(7y po) ~ w? 7%/2+1,

respectively.

At the angular frequencies w > 0 such that

ArglU(wT)]=+7T or
ArglU(w)] = 0,

(61)
(62)

the graph of ¢r(w) — A6 presents inflection points of
ordinates
[¢r(w) — Abl, =n, (63)

where n € N*. On the other hand, in between two succes-
sive inflection points, ¢, (w) — Af smoothly varies around
the discrete plateaux

[fr(w) — Af]y =207 F 2 arctan( ) (64a)

1+ V1+¢2
2n/mF L, (<1,
~ (64b)
2n' Tt Fw/2, £>1,

where n’ € N*. This explains the smooth staircase struc-
tures observed in Figure 5. When ¢ < 1, one shows that
the points of ordinates (64a) almost coincide with the in-
flection points of ordinates (63) with n = 27/, as one notes
(for the ordinates) in the first row of equation (64b); in
this case, the staircase features disappear, as examplified
by the ¢ = 0.75 curves of Figure 5. When ¢ > 1, the
plateaux (64a) are on the contrary very distinct from (63),
as shown in the second row of equation (64b) and illus-
trated by, e.g., the £ = 17.5 curves of Figure 5.

In the large-w, |w|7 > 1, regime where k(w)/(y po) =~
w?72/2 4+ 1 (second row of Eq. (20)), one has from equa-
tions (57) the zeroth-order approximations @(w) ~ 1 and
¥(w) ~ 0, which leads to the very simple approximation

o I )
~ kW) L Y po

all the more satisfied as the right-hand side is large, i.e.,
as |w| T > 1> 1/3/¢. From equation (65), it is very easy

¢ (65)

to extract the large-w Bogoliubov dispersion relation k(w)
of the uniform fluid of light.

This discussion shines interesting new light on the the-
oretical interpretation of the experiment of reference [38],
where the Bogoliubov dispersion relation in a waveguide-
free paraxial-propagation geometry was directly extracted
from the transmission phase. For the sake of uniformity
with the rest of the paper, we carry out this discussion in
terms of k(w), but a translation to the situation of refer-
ence [38] is straightforward (see the second paragraph of
Sect. 6). In the large-w limit where @(w) ~ 1 and 9(w) ~ 0,
the Bogoliubov dispersion relation is mostly particlelike
and the plateau structure gives a negligible correction to
¢r(w). As one can see in Figure 5, the situation is differ-
ent at lower w’s where the plateaux are very pronounced
and may introduce dramatic deviations from the simple
approximation (65).

While the experiment [38] could not access the deep
sonic regime where the correction is the most important,
still the presence of plateaux may explain the slight devi-
ation between experiments and theoretical expectations.
In any case, it is immediate to see from the analytical ex-
pression (56) and from Figure 5 that the coarse-grained
shape of ¢, (w) when the plateau structure is smoothened
out recovers the Bogoliubov dispersion k(w) for almost all
the w’s, except in the vicinity of w = 0 where the first
plateau remains.

5.1.2 Lossy waveguide

In the lossy, ag, as # 0, situation treated in Section 4.3,
letting

w(w, 2) = i(w, z) ke @)z

v(w7 Z) = ?7((4), z) eikeff(w,z)z7
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Fig. 6. Same as Figure 5 for a TE mode propagating along a L = 20 cm-long single-mode channel waveguide with a silicon-nitride
core. The operating wavelength equals 1.55 pm, the incident power is of 100 mW, and the corresponding waveguide’s parameters
are given in the right column of Table 1. Accordingly, the normalized length (72) is approximately equal to 2.51 x 10~% and

is then too small to observe the plateau structures of Figure 5. The red curves represent the |w| < 1/7(L) ~ 0.16 ps™

L and

lw| > 1/7(0) ~ 0.26 ps~* approximations (70) and (73) where, respectively, Re[keg (w, L)] < 1.10 x 1072 m™* is approximately
phononlike, given by the first row of equation (37b), and Re[kes (w, L)] 3> 1.92 x 1072 m™~! is asymptotically particlelike, given

by the second row of equation (37b).

Equation (50) transforms into

U(w) = iiw, L) @*(w, 0) ¢™err (D)

— 7" (w, L) d(w, 0) e~ tketr (@ L)L (68)
Now, we specifically focus on the TE-mode silicon-nitride
case of Figures 4C and 4D, for which the real part of
kest(w, z = L) displays an interesting phononlike behavior
at low angular frequency w (cf. upper row of Eq. (37b)).
Considering for simplicity’s sake the positive, “+,” branch
of kesr(w, 2) and as B2 > 0 and v > 0 (cf. right column of
Tab. 1), Re[keg(w, 2)] is positive and the a(w, z)’s and the
B(w, 2)’s, such that @(w, z) £ 9(w, 2) = f+(w,2) (we make
use of the adiabatic result (25b), identifying keg(w, 2) to
(k(w, 2)) as in Sect. 4.3.2) are real quantities verifying

w?72(2)

£}
w2 T2(2) + 4} » (69

i(w,2) £ 0(w, 2) = VN(w, 2) {

where the local time parameter 7(z) is defined in equa-
tion (36) and N(w,z) is here positive. Using equa-
tions (34), (37a), (53), (68), and (69), we plot in Figure 6
the phase ¢r(w) — Af as a function of w > 0 and as a
function of Re[kes(w, L)].

In the low-w, ie., |w| < 1/7(L) ~ 0.16 ps~!,
regime where Rel[keg(w,L)] < 1.10 x 1072 m™! is
soundlike, approximately given by the first row of equa-
tion (37b), ¢r(w) — A obeys a Taylor expansion similar
to equation (58):

d)L(w) — A9
l
= Qarctan<1 V1 +£2)
((3+202) Re[kegt (w, L)] L
6(1+12) {cmo)ﬂpo(meaom} i
(70a)
~ 251 x 1073 + 7.95 Re?[kegr (w, L)] +---,  (70b)

where the parameters

1
C = ~0.95 71
(c0) cosh?(ag L/4) ’ (71)
0 =C(ag)y {po(0)e %) L ~251 x 1073, (72)

and Re[kes (w, L)] is expressed in m~1. Note that as C(0) =
1, the expansion (70a) reduces to the lossless result (58)
when ag — 0.

Contrary to the graphs plotted in Figure 5, the phase
¢r(w) — A6 in Figure 6 displays no staircase feature. Fol-
lowing the fourth paragraph of Section 5.1.1, this may be
explained by the fact that the normalized length £ is in
the present case very small, of the order of 1073.

In the large-w, i.e., |w| > 1/7(0) ~ 0.26 ps~!, regime
where Relkeg(w, L)] > 1.92 x 1072 m~! is particlelike,
approximately given by the second row of equation (37b),
i(w,2) ~ y/N(w,2) and ¥(w, z) ~ 0, as a result of which
or(w) — A6 reduces to

¢r(w)— Al ~ Relkegt(w, L)] L = 0.20 Re[keg (w, L)], (73)

where Relkeg(w, L)] is once more expressed in m~*.

5.2 Experimental setup

The experimental setup [66] that we propose to mea-
sure the accumulated phase (42) and in turn, as detailed
in Section 5.1, the Bogoliubov dispersion relation of the
beam of light propagating along the channel waveguide
is sketched in Figure 7. It basically consists in a free-
space Mach-Zehnder interferometer [78] illuminated by
a large-power pump beam of angular frequency 2 and
a collinear low-power probe beam of angular frequency
Q4+ Aw (with Aw 2 0). One of the two arms of the Mach-
Zehnder interferometer, denoted “A,” is focused on the
channel waveguide encompassed in between z = 0 and
z = L while the other one, denoted “B,” is free. The high-
and low-power beams nonlinearly interact in the waveg-
uide through a four-wave mixing. The total intensity I,
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Fig. 7. Schematic representation of the Mach-Zehnder-interferometry pump-and-probe experiment [66] making it possible to
measure (42), (75) and then, as explained in Section 5.1, the Bogoliubov dispersion relation of the fluid of light propagating
along the channel waveguide encompassed in between z = 0 and z = L.

of the probe “p” measured at one of the light detec-
tors of the Mach-Zehnder interferometer after filtering out
all other frequency components (namely, the pump at Q
and the Kerr-induced idler at € — Aw) reads

Iy =In +Ip +2\/Ip Iz cos[pr(Aw) +---],  (74)

where Ia(Ig) is the intensity measured in the arm “A”
(“B”) by switching off the arm “B” (“A”) by means of an
optical shutter and ¢, (Aw) + --- denotes the dephasing
between the arm “A” and the arm “B,” induced most par-
ticularly by the presence of the waveguide along the arm
“A.” Making use of a well-adjusted delay line for mak-
ing the interferometer perfectly balanced [66], the latter
dephasing reduces to the phase

Ap(Aw, LT)
Ap(Aw,07)

accumulated by the probe in the course of its propagation
along the waveguide, hence the use of the suspension dots
in equation (74).

The notations used in equation (75) are identical to
the ones used in equation (42) for the simple and good
reason that the quantities (75) and (42) are strictly equal:
the weak-power probe on top of the strong-power pump in
the zoomed window of Figure 7 corresponds to the weak-
amplitude fluctuation superimposing upon the steady pro-
file Ag(z) in equation (40). This can be easily seen by
defining

a(w, 2) = 27 6(w — Aw) Ap(w, 2) e~ P(),

Ap(wa Z) = ‘le(wa Z) eiAﬁp(w)z’

61(80) = g | tmoaz )

(76a)
(76Db)

in equation (40), that indeed yields the usual decomposi-
tion

A(t, 2) = Ag(2) + Ap(Aw, z) e 1AW gidB(Aw)z - (77)

for the total complex optical field’s amplitude in terms
of the pump, oscillating at (€2, Bo/n0), and the probe, de-
tuned from the former at [Q + Aw, Bo/no + ABp(Aw)].

Similarly, the Bogoliubov wave on top of the stationary
mean field Ag(z) in equation (44) corresponds to the linear
superposition of the signal “s” at [Q2 4+ Aw, B + ASs(Aw)]

and the idler “i” at [ — Aw, By + AG(Aw)]:
A(t, 2) = Ao(2) + AS(A(A)’ 2) e iAWt JiIASs(Aw)z
+ /L(Aw, Z) eiAwt eiAB;(Aw)z, (78)

where the signal’s and idler’s amplitudes Aq(Aw, z) and

A;j(Aw, z) are defined through

a(w) u(w, z)

1 =271d(w — Aw)

Ag(w, .
(w Z) 67190(2)’
a*(w) v*(w, z) i(w, 2

(79a)

Agi(w, 2) = Ags(w, 2) eAPsi@)z, (79b)
In this Mach-Zehnder-interferometry pump-and-probe ex-
periment, one measures the probe dephasing ¢ (Aw) as
a function of the angular-frequency detuning Aw — i.e.,
the angular frequency w of the Bogoliubov fluctuation,
from the J peak in the definition (79a) —, from which one
deduces the Bogoliubov dispersion relation of the fluid of
light as a function of Aw, making use of the recipe detailed
in Section 5.1.

6 Conclusion

Making use of Bogoliubov’s theory of dilute Bose quan-
tum fluids, we have investigated the dispersion rela-
tion of small luminous fluctuations on top of a beam
of polarized monochromatic light propagating along a
single-mode channel waveguide displaying an instanta-
neous and spatially local Kerr nonlinearity as well as one-
and two-photon losses. Analytical and numerical results
have been derived in both the ideal situation where the
photonic losses are absent and the realistic case where
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they are present. Two types of nonlinear-silicon-photonics
waveguides with silicon and silicon-nitride cores have been
used to illustrate our theoretical predictions. Additionally,
we have proposed a Mach-Zehnder-interferometry pump-
and-probe experiment [66] to measure the dispersion law
of the Bogoliubov excitations of the beam of light: a
weak-power probe beam (the analogous Bogoliubov wave)
copropagates along the waveguide with a strong-power
pump beam (the analogous background Bose quantum
fluid) and accumulates a phase delay in the course of its
propagation, from which the Bogoliubov dispersion rela-
tion is derived.

Importantly, note that our one-dimensional results
in the time domain are conceptually very general and
may be transferred (modulo ad-hoc changes in the no-
tations) to the full three-dimensional generalized nonlin-
ear Schrodinger problem (see, e.g., Refs. [39,48] for the
ag, az = 0 situation)

B2 O°E

. OF 1 [(9°E  O*E
2 Ot?

Yoz T 28 \ 922 T Oy?

2
—9lEE— (a0 + a2 |E]*) E, (80)

that describes the propagation of the slowly varying enve-
lope of the total complex electric field of a paraxial beam of
quasimonochromatic light in a waveguide-free, local, and
lossy Kerr medium. In addition to its direct interest for
nonlinear optics as a tool to probe novel effects in the op-
tical phase, the experiment we propose holds the promise
to highlight a very general feature of the generalized non-
linear Schrodinger equation.
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Appendix A: Adiabatic theorem
for z-dependent propagating optical systems

In this appendix, we reformulate the adiabatic theorem of
quantum mechanics [74,75] within the optical language.
The derivation of the final result (A.13) is illustratively
made in the standard case of a Hermitian effective evolu-
tion along the propagation, z, axis but there exists a simi-
lar identity in the non-Hermitian case (see, e.g., Ref. [76]).

Let us consider that the propagation in the positive-z
direction of some (scalar or vector) complex optical field
U(z € [0,L]) is ruled by the generic Schrodinger-type
equation

W) =i ) [0(=) = ~Q(:) [W(=))

here written in Dirac’s notations, where the Hamilton-
type operator —Q(z) is a function of the timelike coor-
dinate z and is supposed to be Hermitian. Denoting by
{qm(2)}m the set of the (real) eigenvalues of Q(z), as-
sumed discrete, and by {|t.(2))}m the one of the cor-
responding eigenvectors, assumed to constitute an or-
thonormal basis: (¢, (2)|t)n/(2)) = On.ns, the solution of
equation (A.1) may be generically expanded as

W) =D am(z) €D [ (2),

(A.1)

(A.2)

where

On(z) = /OZ dz' qn(2") (A.3)

denotes the “dynamic” phase of the propagating state

o (2) €9 2) 4y, (2)).
Substituting equation (A.2) into equation (A.1), one
gets, making use of the eigenvalue equation Q(z) ¢, (2)) =

> ()€ 1, (2))
== an(2) ey, (2),

in such a way that, projecting onto the nth eigenstate

¥ (2)) of Q(2),

(A.4)

ay,(2) = = (¥, (2) |7 (2)) @, (2) + R, (2), (A.5)
where the rest
Ro() = =3 W)
x Hfm(2)=0n(2)] m(2) (A.6a)
o (n(2)] Q' (2) [¥m(2))
B Zm#" qm(2) — qn(2)
x H0m(2)=0n(2)] QO (2). (A.6b)

Equation (A.6b) is obtained from the projection of the
derivative with respect to z of the eigenvalue equation
Q(2) |V (2)) = gn (2) |thns (2)) onto the |1, (2)) eigenstate
(n#n') of Q(z):

(U (2) Q'(2) [t (2)) + (¥ (2)] Q2) [ (2))

= ¢ (2) (¥, (2) [ (2)), (A7)
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and from the identity
(¥ (2)] Q(2) W (2)) = a4 (2) (¥ (2) ¥ (2))-

In the particular case where Q(z) is an adiabatically vary-
ing function of z, the off-diagonal components of the rate
of change of Q(z) in the {|m(2))}m eigenbasis and in
units of the corresponding eigenvalue gap is small com-
pared this gap [74,75], i.e.,

D Q) W) | _ .
B ) —an(e) | S Ll () qn&)

for all (n,n’ # n). Accordingly, R, (z) in equation (A.5)
may be neglected, yielding

(A.8)

(A.10)

where

=i [ T (). (A11)

The latter is a real quantity because (1, (2)|¢, (%)) is
a purely imaginary number, as it can be demonstrated
from the differentiation of the normalization condition
(Yn(2)|Yn(2)) = 1. Inserting equation (A.10) into equa-

tion (A.2), one eventually obtains
(U(2) = Y am(0) e e g, (2). (A12)

m

As a result, in the case where the optical wave is initially
in the nth eigenstate |1, (2)), i.e., if |¥(0)) = A, [, (0)),
all the a;,(0)’s in equation (A.12) are equal to Ay, Om.n
and the system then remains in the |1, (z)) state:
|W(2)) ~ A, 07Z) 72 |y (2)), (A.13)
as it would do in the case of a z-independent process,
only picking up a couple of phase factors in the course
of the propagation along the z axis. When the adiabatic
effective evolution is not cyclic, i.e., when Q(L) # 9Q(0),
the phase factor ™ (*) can be canceled out by a trivial
choice of gauge for the eigenvectors, that is, [, (2)) —
[t (2)) = € (3) |3h,,(2)). In the contrary case, v, (z) be-
comes a gauge-invariant geometrical quantity known in

quantum mechanics as the Berry phase [79].
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